A Mesh Optimization Algorithm to Decrease the Maximum Error in Finite Element Computations
نویسندگان
چکیده
We present a mesh optimization algorithm for adaptively improving the finite element interpolation of a function of interest. The algorithm minimizes an objective function by swapping edges and moving nodes. Numerical experiments are performed on model problems. The results illustrate that the mesh optimization algorithm can reduce the W 1,∞ semi-norm of the interpolation error. For these examples, the L, L∞, and H norms decreased also.
منابع مشابه
Maximum Allowable Dynamic Load of Flexible 2-Link Mobile Manipulators Using Finite Element Approach
In this paper a general formulation for finding the maximum allowable dynamic load (MADL) of flexible link mobile manipulators is presented. The main constraints used for the algorithm presented are the actuator torque capacity and the limited error bound for the end-effector during motion on the given trajectory. The precision constraint is taken into account with two boundary lines in plane w...
متن کاملOn Interpolation Errors over Quadratic Nodal Triangular Finite Elements
Interpolation techniques are used to estimate function values and their derivatives at those points for which a numerical solution of any equation is not explicitly evaluated. In particular, the shape functions are used to interpolate a solution (within an element) of a partial differential equation obtained by the finite element method. Mesh generation and quality improvement are often driven ...
متن کاملReducing Computational and Memory Cost of Substructuring Technique in Finite Element Models
Substructuring in the finite element method is a technique that reduces computational cost and memory usage for analysis of complex structures. The efficiency of this technique depends on the number of substructures in different problems. Some subdivisions increase computational cost, but require little memory usage and vice versa. In the present study, the cost functions of computations and me...
متن کاملExperimental Design Approaches to Maximum Stress Prediction for Lightweight Structure Designs
Background. One important question in optimizing the structure of a manufactured object and aiming for a lightweight design is to predict, given a particular shape hypothesis, the largest stress an object experiences under certain external force configurations. An optimization procedure can then be carried out to synthesize the lightest weight structure that can withstand maximum stress for all...
متن کاملDynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation
This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...
متن کامل